Exploring Analyic Geometry with Mathematica®

Home Contents Commands Packages Explorations Reference
Tour Lines Circles Conics Analysis Tangents

Reciprocal of a Quadratic

recquad.html

Exploration

Given the general quadratic "recquad_1.gif", show that the reciprocal of Q in C is the quadratic

"recquad_2.gif"

"recquad_3.gif"

when the auxiliary conic "recquad_4.gif".

Approach

Create a general conic, Q, and the auxiliary conic. Construct a point "recquad_5.gif", assumed to be on Q. Construct the tangent line, L, at "recquad_6.gif". Take the reciprocal of L with respect to C, producing "recquad_7.gif".  Show that "recquad_8.gif" is on the postulated quadratic.

Initialize

To initialize Descarta2D, select the input cell bracket and press SHIFT-Enter.

This initialization assumes that the Descarta2D software has been copied into one of the standard directories for AddOns which are on the Mathematica search path, $Path.

<<Descarta2D`

Solution

Create a general quadratic.

Clear[a,b,c,d,e,f];
q1=Quadratic2D[a,b,c,d,e,f];

The point "recquad_9.gif" is a point on Q, and L is tangent to Q at "recquad_10.gif".

Clear[x1,y1];
p1=Point2D[x1,y1];
l1=Line2D[p1,q1]

"recquad_11.gif"

Find the auxiliary conic (a unit circle at the origin).

c1=Circle2D[{0,0},1];

Define the reciprocal function.

Reciprocal2D[
   Line2D[A1_,B1_,C1_],
   Circle2D[{0,0},1]] :=
Point2D[-A1/C1,-B1/C1];

Find the reciprocal of L.

p2=Reciprocal2D[l1,c1]

"recquad_12.gif"

Find the reciprocal quadratic.

q2=Quadratic2D[
      4*c*f-e^2,2*d*e-4*b*f,
      4*a*f-d^2,4*c*d-2*b*e,
      4*a*e-2*d*b,4*a*c-b^2];

Construct a polynomial.

eq1=Polynomial2D[q2,Coordinates2D[p2]] //Together

"recquad_13.gif"

Ignore the denominator and the constant (the numerator will be shown to be zero).

eq2=Numerator[eq1][[2]]

"recquad_14.gif"

Factor.

eq3=Factor[eq2]

"recquad_15.gif"

One of the terms is zero, therefore the expression is zero.

eq3 /.
   (f+d x1+a x1^2+e y1+b x1 y1+
    c y1^2)->0

"recquad_16.gif"


Copyright © 1999-2007 Donald L. Vossler, Descarta2D Publishing
www.Descarta2D.com